SUMMARY: ONSITE TREATMENT OF LEACHATE USING ENERGIZED PROCESSES

Daniel E. Meeroff (PI)

FAU has pioneered the advancement of landfill leachate treatment systems using the photochemical iron-mediated aeration process and the TiO₂ photocatalytic process at lab scale in previous research funded by the Hinkley Center. Previous work has led to the development of reactor prototypes for pilot scale testing. This proposal describes the next logical step in this line of research, which is the field testing of pilot scale onsite treatment systems capable of detoxifying leachate with the power of ultraviolet light and advanced oxidation. The objective of the proposed research is to test the prototype photooxidative reactors at pilot scale for the removal of COD/BOD, ammonia, heavy metals, color, and pathogens.

Leachate management options include on-site treatment, municipal sewer discharge, natural attenuation (including deep well injection), hauling offsite, or a combination approach. Typically, some form of aerobic treatment is employed to reduce leachate strength prior to discharge. However, biological systems are not well-suited for removal of bio-toxics from water and are inefficient in dealing with wastes of varying quality, such as leachate. Thus post-treatment, using constructed wetlands, combined physical/chemical/biological treatment, or evaporative systems, is generally required. Unfortunately, activated carbon and certain advanced treatment processes, such as ozone or ultraviolet light, do not adequately address inorganics, and membrane systems or air stripping merely transfer organics to another phase. Furthermore, multiple barrier systems are complicated to operate, costly, and generally inefficient. Unfortunately, most current processes cannot adequately address inorganics and organics simultaneously. From our previous work funded by the HCSHWM, our research team evaluated 23 different engineering alternatives for long-term leachate management. The results indicated that the most effective and sustainable strategies for the future would involve technologies that can destroy different classes of harmful contaminants all at once, without producing adverse byproducts and residuals.

So the question is: “Can we develop systems to treat landfill leachate at the source, cost effectively?”

If energized processes work as well in the field (at pilot scale) as they do in the laboratory, then the answer is “yes,” because energized processes are: 1) designed to use ultraviolet light, which is potentially free, 2) easy to operate because they just require sufficient contact time and do not rely on complex precipitation reactions or biochemical processes, 3) not subject to biological upsets because they are physico-chemical processes that create broad spectrum oxidants to remove aqueous contaminants, and 4) designed to avoid merely transferring the pollutant to another medium (i.e. air or sludge).
This research will address a major technological need for sustainable, economical options for routine leachate treatment and safe discharge to the environment by investigating energized processes, such as an innovative photochemical oxidation process currently being developed at FAU, which uses ultraviolet light to activate the surface of a semi-conductor to produce highly reactive substances derived from water called radicals. These radicals rapidly destroy man-made organic chemicals, breaking them down into carbon dioxide, water, and innocuous salts. In addition, it has been discovered recently by a UM-FAU partnership (funded by HCSHWM) that these types of processes can also remove heavy metals and reduce nitrogen-containing constituents. Thus it may now be possible to eliminate impurities in water all at once using a single process.

The objective of the proposed research is to pilot test the proposed energized technology for the removal of certain parameters of interest (such as COD/BOD, ammonia, heavy metals, color, pathogens, and others mutually agreed upon by FAU and the TAG) in order to develop preliminary cost estimates, process footprints, and pre-treatment requirements.
Project Title: Onsite Treatment of Leachate Using Energized Processes
Principal Investigators: Daniel E. Meeroff, Ph.D.
Affiliation: FAU
Phone number: (561) 297-2658
Project website: http://labees.civil.fau.edu/leachate.html

Progress to Date:

- **Task 1. Literature review.** Based on previous work started by D.E. Meeroff, Tammy Martin, Swapnil Jain, Hatsucko Hamguchi, Richard Reichenbach, Anthony Ruffini, and André McBarnette, a state-of-the-science literature review of landfill leachate treatment process efficiency with photocatalytic oxidation and other novel advanced oxidation processes was conducted. The main focus of the literature review topics has been to identify precedents using energized processes such as UV/peroxide, PIMA, photo-Fenton, aerated corrosive cell Fenton, and TiO₂ for wastewater treatment applications. In this review, specific questions are targeted, such as the following: 1) efficacy and reaction times for various pollutants (in particular those targeted for this study), 2) appropriate UV intensity range using the new UV fluence determination methods, 3) appropriate range of reactant or catalyst dose (in grams or m²), and 4) any factors that can impact the efficiency of the process such as catalyst poisoning, pH/temperature effects, etc. Currently, we have hired an outstanding undergraduate student, Frank Youngman, who is enrolled in the 5-year Bachelor/Masters degree program in civil engineering, to conduct this work as part of his graduate thesis research.

- **Task 2. Conduct baseline leachate quality characterization.** Approval and permission for sampling raw leachate has been obtained from Jeff Roccapriore, District Manager, Broward County Central Disposal, Waste Management Inc. of Florida for the landfill facility located on Sample Road and Florida’s Turnpike. Sample collection began in early September 2011 and is ongoing. We have characterized the leachate samples for pH, COD, alkalinity, TDS, TSS, HPC, BOD, conductivity, ammonia, copper, and arsenic. Mr. Youngman has conducted all of the baseline studies to develop familiarity with the testing protocols for chemical analysis of leachate. His results are found below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>CDSL 03/16/2010</th>
<th>CDSL step up station 09/30/2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity</td>
<td>mg/L as CaCO₃</td>
<td>4500</td>
<td>4350</td>
</tr>
<tr>
<td>pH</td>
<td>pH units</td>
<td>7.6</td>
<td>7.8</td>
</tr>
<tr>
<td>Color</td>
<td>PCU</td>
<td>500</td>
<td>1175</td>
</tr>
<tr>
<td>Ammonia</td>
<td>mg/L as NH₃-N</td>
<td>1748</td>
<td>1855</td>
</tr>
<tr>
<td>COD</td>
<td>mg/L as O₂</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>BOD</td>
<td>mg/L as O₂</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
TASK 3. Preliminary testing. Using the samples collected in Task 2, preliminary testing so far has involved initial screening experiments. First, a hydraulic modification to the pilot testing unit was completed to allow for longer term experiments. In the previous study, we were limited to only 4 hours of testing before the temperatures became excessive (T>60°C). We purchased a recirculating chiller unit and filled it with Dynalene, which is a silicone-based bath fluid which has the capability of maximizing our heat transfer to provide the best thermal stability for our reactor, as possible given the technological limitations. The maximum temperature range for this fluid is -50 to 60°C. Next, we installed the cooling system using a compatible thin walled PTFE pipe wrapped around the reaction chamber. Finally, we installed a stainless steel three-way valve that will allow us to stop the unit, drain the pump, and recirculate the catalyst so that it will not collect in the weir above the falling film reaction zone during long term kinetics experiments in which we start and stop the unit overnight for cooling. Currently, we are conducting experiments to determine the optimal settings to run the unit for leachate tests planned for next month. The goal is to determine the magnitude of residual generation, energy consumption, and preliminary removal kinetics as well as appropriate flow rate, reactor volume, and treatment targets.

![Figure 1](image.jpg)

Figure 1. Three way valve modification for flushing and priming the recirculating pump.
Figure 2. Frank Youngman testing the temperature control system provided by the recirculating chiller unit.

- **TASK 4. Preliminary assessment of pilot performance.** During operation of the preliminary testing pilot unit, measurements of COD/BOD, ammonia, heavy metals, color, and/or pathogens will be taken to investigate system performance. Troubleshooting and fine-tuning for maximum performance will be investigated, as needed. The operators at the facility will be invited for a demonstration of the unit and will be queried as to the desired performance characteristics and operation of the system, if scale-up is potentially achievable. To date, no work in this task has been initiated.

- **TASK 5. Develop final recommendations and preliminary cost analysis.** Using the data developed in Task 3 and 4, an appropriate level of reactant/catalyst and UV fluence needed to meet the water quality guidelines for general sewer discharge will be determined. The carbon footprint of the process will be calculated and preliminary operating costs will be monitored in terms of electricity consumption, pre-treatment, chemicals, and residuals disposal requirements, as time allows. An assessment will be conducted to evaluate the associated costs per gallon treated, and the environmental consequences of the proposed full scale unit will be evaluated in context with leachate hauling to offsite wastewater treatment plants. To date, no work in this task has been initiated.

- **TASK 6. Prepare publication materials.** Interim and final reports will be developed and submitted. A plan will be developed for follow-up work based on comments from reviews of same. Furthermore, a scholarly publication will be developed, including but not limited to, a poster and a conference paper. The website for the project and the first progress report have been created and submitted. Preparations are being made for a TAG meeting in January 2012.