SUMMARY: INVESTIGATION OF ENERGIZED OPTIONS FOR LEACHATE MANAGEMENT Daniel E. Meeroff (PI), C. T. Tsai (Co-PI) Because of widely varying practices in solid waste management across the State of Florida, an understanding of emerging issues and an inclusive solution to long-term management of landfill leachate is currently not available. Leachate is typically too strong to be discharged to classical wastewater treatment systems, and deep well injection systems are becoming increasingly more difficult to implement in certain portions of the State of Florida. This research will address a major technological need for sustainable, economical options for routine leachate treatment and safe discharge to the environment by investigating energized processes, such as photochemical oxidation, which include the futuristic photochemical iron-mediated aeration (PIMA) and TiO₂-magnetite photocatalytic technologies. This research will build upon the FCSHWM-funded project entitled, "Investigation of options for management of leachate and wastewater," directed by Dr. J.D. Englehardt and Dr. D.E. Meeroff, who were the first to successfully demonstrate the iron-mediated aeration (IMA) process for in-situ remediation of organic and metallic contaminants in soil and groundwater at former nuclear weapons facilities managed by the U.S. Department of Energy, in laboratory tests. The IMA process was shown to remove 99.996 percent of arsenic and 99 percent of organic contamination from a high strength organic wastewater, with costs projected at one order of magnitude lower than competing processes. Dr. Meeroff designed the first photochemically-assisted iron-mediated aeration (PIMA) reactor and performed the first experiments to demonstrate its effectiveness using ethylenediamine tetraacetic acid (EDTA) and cadmium metal as the model contaminants. Results showed that PIMA accelerated reaction kinetics by a factor of 6 compared to non-energized controls without pH adjustment or chemical addition, indicating the potential that PIMA can be more rapid, and perhaps more thorough, than natural biodegradation and some forms of passive treatment (e.g. nonenergized iron mediated aeration). Regarding photocatalytic nanoparticles, Dr. C.T. Tsai is a pioneer in this field and has recently developed a TiO2-magnetite nanopowder through a collaboration between Florida Atlantic University and Dr. Xudong Sun (visiting research professor at FAU from Northeastern University, China) using a novel microemulsion method to coat a magnetic substrate for military applications. However, these nanoparticles have characteristics suitable for water treatment applications and are an excellent candidate for long-term leachate management. Dr. Tsai (Department of Mechanical Engineering) and Dr. Meeroff (Director of the Laboratories for Engineered Environmental Solutions) have teamed up to establish the Florida Atlantic University Nanoparticle Applications Laboratory to investigate other engineering uses of nanocatalysts. The objectives of the research are to: - 1. To examine the literature on energized alternatives for detoxification and treatment of leachate; collect leachate quality data; identify issues/trends associated with long-term leachate management; and prepare a list of energized alternatives ranked according to environmental sustainability, efficiency, risk, and economic factors. - 2. To design and test laboratory reactors for leachate treatment using energized options such as the photochemical iron-mediated aeration technology (PIMA) and TiO₂-magnetite photocatalytic processes. - 3. To prepare preliminary cost analyses and risk assessments on selected technologies to provide a Florida-specific matrix of engineering alternatives that are innovative, economical, and environmentally sound to aid solid waste management personnel in decision-making. Before the grant was awarded in 2005, Eli Brossell (undergraduate) and Courtney Skinner (graduate) completed construction of the PIMA process reactor. It is functional, and the aeration system has been calibrated. Courtney Skinner, Tammy Martin (Lanny Hickman Internship Program) and François Gasnier have begun work towards their masters thesis on this project. Ms. Skinner and Mr. Gasnier conducted validation testing and method development of the equipment required to evaluate the concentrations of the six target pollutants (Pb, conductivity, TDS, ammonia, COD and BOD₅) to be monitored during performance testing of the photochemical oxidation technologies. The aim is to determine the conditions necessary to allow for safe discharge of treated leachate to the sanitary sewer or reuse on site. Using existing data on currently available technologies in conjunction with performance data generated from laboratory tests to develop unit treatment costs for scale-up, a matrix of Florida-specific engineering alternatives that are innovative, economical, and environmentally sound will be developed to aid solid waste management personnel in decision-making. This tool will help to address current barriers to the use of futuristic technologies for reducing toxic loads in water, wastewater, and soils in addition to leachate. #### **PROGRESS REPORT** (December 2007) Project Title: Investigation of Energized Options for Management of Leachate, Year 2 Principal Investigators: Daniel E. Meeroff, C. T. Tsai **Affiliation**: FAU Phone number: (561) 297-2658 Project website: http://slab.civil.fau.edu/~daniel/labees/html/leachate.html **(9/1/06-8/31/07)** Because of widely varying practices in solid waste management across the State of Florida, an understanding of emerging issues and an inclusive solution to long-term management of landfill leachate is currently not available. Some leachates are too strong to be discharged to typical wastewater treatment plant systems. This research will address a major technological need for sustainable, economical options for routine leachate treatment and safe discharge to the environment by investigating energized processes, such as photochemical oxidation, which includes the futuristic photochemical iron-mediated aeration (PIMA) and TiO2-magnetite photocatalysis. # **Progress to Date:** An ongoing literature review is being conducted focusing on viable leachate treatment methods, including the photochemically-assisted iron-mediated aeration (PIMA) process and the TiO_2 -magnetite photocatalysis process. The review began with FAU graduate students, Courtney Skinner, Adriana Toro, François Gasnier, and Tammy Martin in 2005. A visiting researcher from the Indian Institute of Technology in Bombay, Mr. Swapnil Jain, continued the work by conducting an exhaustive search of the photocatalytic literature [1990 and beyond] with the aid of the FAU S.E. Wimberley Library Information Services Department. Mr. Jain prepared an annotated bibliography, which is being refined by another visiting scholar from Japan, Ms. Hatsuko Hamaguchi. The main focus of this targeted literature review is to identify precedents using TiO₂-magnetite for water treatment applications. Specific questions to be addressed were: 1) advanced oxidation process efficacy for various pollutants, 2) appropriate UV intensity range, 3) appropriate reactor conditions (i.e. pH, temperature, etc.), 4) appropriate range of catalyst dose (in grams or m²), 5) appropriate hydraulic retention times or reaction/exposure times, 6) catalyst reconditioning, 7) reasons for catalyst poisoning, and 7) appropriate mixing regime. In addition, any factors that could impact the efficiency of the process such as catalyst poisoning, pH/temperature effects, etc. were identified in preparation for photocatalytic oxidation laboratory scale testing at FAU. In July, Dr. Hala Sfeir from Brown and Caldwell was contacted to share results on a statewide survey of leachate management options that was presented at the SWANA Conference. The second goal is to produce a matrix of different technologies, ranked according to: - Efficiency of Treatment, regarding pollutant removal performance - Residuals, regarding solids or liquids generated during treatment - Footprint - Other Parameters, included in this category are environmental impacts, odor generation, dependency on climate conditions, etc. - Preliminary Costs This work is underway and ongoing. Table 1 presents some preliminary results concerning this part of the literature review. They clearly demonstrate the benefits of using AOPs over traditional on-site techniques. Furthermore, the addition of UV energy improves the performance of AOPs. **Table 1: Ranking of leachate treatment techniques** | | Technology | Туре | Total | |--------------|-------------------------------------------------------------|----------|-------| | | Deep well injection | On-site | 14 | | | Hauling off-site | Off-site | 15 | | | Evaporation | On-site | 27 | | Conventional | Municipal sewer discharge without pre-treatment | Off-site | 39 | | Treatment | Aerobic and Anaerobic biological process | On-site | 24 | | Techniques | Air stripping | On-site | 29 | | | Coagulation, precipitation, flocculation, and sedimentation | On-site | 34 | | | Ion exchange | On-site | 36 | | | Filtration | On-site | 38 | | | Carbon adsorption | On-site | 39 | | | Bioreactor: leachate recirculation | On-site | 43 | | | Ozone and hydrogen peroxide | AOP | 25 | | | Ozone | AOP | 26 | | Innovative | Hydrogen Peroxide | AOP | 35 | | | Fenton | AOP | 36 | | Treatment | Iron-Mediated Aeration | AOP | 41 | | Techniques | Ultraviolet light | EP | 29 | | | UV and ozone | EP | 31 | | | Photo-Fenton | EP | 36 | | | UV and hydrogen peroxide | EP | 36 | | | Ultraviolet light, ozone and hydrogen peroxide | EP | 36 | | | Photocatalytic oxidation | EP | 47 | - Design and construction of the PIMA pilot scale reactor (Figure 1) is complete, and pilot scoping tests with simulated leachate and mixtures have been completed. - A second reactor was developed for use with TiO₂-magnetite experiments (Figure 2). It is a free-standing, bench scale reactor. Additional experiments are planned with another micro-scale reactor obtained through a partnership with the FAU Honors College to generate performance data for TiO₂-magnetite experiments. - The first experimental phase with PIMA (individual simulated leachate tests) is finished: individual scoping tests on the six components have been completed. Figure 3 shows François Gasnier analyzing an ammonia sample. Figure 5 to Figure 10 below are graphs showing the results obtained during these scoping tests. Table 2 summarizes the maximum removal percentages obtained after 16 hours of treatment (unless stated otherwise in the remarks) and the initial values. In terms of PIMA process performance measured during the individual simulated leachate scoping tests, the following were found: - COD: After 24 hours, the highest removal efficiency recorded was 40 percent with an initial concentration of approximately 10,000 mg/L (high level). However, after 16 hours, the highest removal efficiency recorded was 50 percent with an initial concentration of approximately 3,000 mg/L (medium level). - Conductivity and TDS: After 2 hours, initial removal efficiency was low and concentrations started to increase due to the dissolution of iron and the reduction in volume due to evaporation. - Ammonia: No to low removal was observed. After additional research and experiments, the acidic pH of the simulated leachate is likely responsible for these results. Ionized aqueous ammonia exists in equilibrium with gaseous ammonia as shown in the following equation: $NH_4^+ \longleftrightarrow NH_{3(\uparrow)} + H^+$ - The pKa of the NH₄⁺/NH₃ couple is 9.2. Since the unadjusted pH was recorded to be below 7.0 during each experiment, ammonia did not strip out of the simulated leachate. An additional experiment where the pH was adjusted to a higher value than this pK_a verified this conclusion. Reactor design was also demonstrated as a cause for this absence of removal: the ammonia gas has a higher density than air and can not escape from the test tube. - BOD₅: After 16 hours of treatment, an average of 44 percent removal was observed on the high concentration level. The addition of UV greatly increased the action of IMA process for the decrease of BOD₅ modeled by glucose and glutamic acid. Indeed, in the same amount of time, the IMA process removed only 28 percent of the initial BOD₅. - Lead: After 16 hours of treatment, a removal greater than 99.97 percent was achieved with the PIMA process. As noticed during the literature review, the IMA process also achieved a removal greater than 99.96 percent for metals such as arsenic. On the other hand, the UV control process, achieved only a removal of 54 percent. - The second experimental phase with PIMA (simulated leachate mixtures) is complete. Mixtures containing low, middle and high levels of the parameters of interest have been tested. Table 3 summarizes the maximum removal percentages obtained after 16 hours of treatment. In terms of PIMA process performance measured during the simulated leachate mixtures scoping tests, the following were found: - Results obtained on COD during the mixture scoping tests followed the same trends as those obtained during the individual tests. Of the three processes, the one using only UV gave the lowest COD degradation performance. The IMA process is enhanced by UV radiation. - Results obtained for conductivity and TDS during the mixture scoping tests confirmed those obtained during the individual tests. None of the processes had a measurable impact on the NaCl concentration. - Results obtained on BOD₅ during the mixture scoping tests also confirmed those obtained during the individual tests. The UV control process presented the best biochemical degradation capacity. This justifies why the PIMA process achieves a better purification than the IMA process. - Results obtained on ammonia during the mixture scoping tests followed the same pattern as the results encountered during the individual ammonia tests. None of the three processes tested had an impact on the ammonia concentration. This is explained by the pH, which was not adjusted to the levels necessary to bring about enhanced ammonia removal. - Results obtained on lead during the mixture scoping tests confirmed those obtained during the individual tests. The UV control process presents the lowest removal, and the PIMA process achieved the highest removal (33 percent). - Results also demonstrated the interactions between the multiple pollutants, especially concerning COD and BOD₅. - The third experimental phase with PIMA (real leachate tests) is completed. PIMA process was applied to real Class I landfill leachate from the Solid Waste Authority of Palm Beach County. In terms of PIMA process performance measured during the real Class I leachate tests, the following were found: (graphs are presented in Figure 11 to Figure 16): - The PIMA process did not keep its promising results observed during the simulated leachate experiments. No removal was achieved: COD concentration remained stable around its initial value. - Conductivity and TDS remained unchanged over the course of the reaction (16 hr). No removal was observed. - Similar to COD, the PIMA process did not appreciably lower the BOD5 content of the real leachate. - Concerning ammonia, the performance of the PIMA process confirms the conclusion drawn during the simulated leachate phase. No actual removal is achieved without pH adjustment. - Lead is the only component for which the PIMA demonstrated significant removal. - Concerning odor, no beneficial effect of treatment was noticed during the experiment. An odor was present at all sampling times. - Concerning color, PIMA was effective at eliminating the dark brown color of the raw leachate. This color was found to persist even after filtration, but the PIMA process - can achieve, after filtration, an effluent of very high color quality. Figure 4 shows the extent of the color removal. - The experiment phase of the project showed the limitations of the laboratory scale reactor and of the PIMA process as applied on real leachate. Some recommendations have been formulated in order to achieve equivalent removal with real Class I leachate than during scoping tests: re-engineering of the reactor to improve aeration and mixing, evaluation of the pH influence, evaluation of a two step process (first at high pH and then at low pH), using an alternate source of iron and COD simulant (i.e. humic acids or phenol). - Dr. Chen has synthesized the first TiO₂-magnetite nanoparticles at FAU. He has begun the process of manufacturing particles in sufficient quantities to complete scoping tests. Additional particles were obtained from the University of Florida, through William Koseldt for comparison testing. Ms. Hamaguchi also developed a new method for synthesizing photocatalytic particles for additional testing. - Preliminary initial screening experiments to determine the magnitude of residual generation and removal kinetics using bench scale demonstration units for TiO₂magnetite photocatalysis were performed by Swapnil Jain, and the following were found: - The TiO₂-magnetite process used a different reactor compared to the PIMA testing. The main difference is that the UV lamp was suspended directly in the simulated leachate using a reactor designed specifically for this purpose. The aeration tubes were replaced by four pipes that bubbled air into the solution for suspending the catalyst particles in the solution and for adding molecular oxygen for the reaction to occur. To assist mass transfer, the solution was mechanically stirred as well. - The first experiment was conducted with ammonia, and no removal was achieved: Ammonia concentration remained stable around its initial value, except for the 3 hr sample point, which was likely a measurement error. - The second experiment was conducted with COD. The best removal was 49%, which occurred after 3 hours. The solution color darkened with time (Figure 19), and the particles appeared permanently darkened after reconditioning and washing. - Subsequent experiments with reconditioned particles did not show any removal for COD or ammonia. - Tests were then conducted with TiO₂ particles (Degussa P25) obtained from University of Florida. These tests (Figure 20 and Figure 21) also showed no removal, and after rinsing and reconditioning, the particles changed from white to black and changed from a fine powder to a very sticky agglomeration. - The reconditioned particles were placed in a muffle furnace to remove any adsorbed organics, and then the experiment was repeated. However, no removal was observed for COD or ammonia (Figure 22). - The initial particles that showed COD removal along with the reconditioned particles (Figure 23) were sent for X-ray diffraction analysis to determine if any surface chemistry has been altered. This study is being performed at USF. Ms. Hamaguchi's experiments with TiO₂ particles have been focused on COD removal and specific constituents such as KHP, isobutanol, and phenol. Preliminary results indicate that her modifications have enhanced removal of COD and allowed the particles to be reused. ## **Other Notable Accomplishments:** - Mr. Gasnier successfully defended his thesis in July 2007. - Mr. Jain successfully completed his research internship in August 2007. - Mr. Gasnier is preparing a scholarly publication for submittal to the Journal of Hazardous Waste Management. - Two abstracts were accepted for upcoming technical conferences - Florida A&WMA Conference - o Global Waste Management Symposium ## Research planned for the upcoming months: - Complete/refine the engineering alternative analysis of candidate technologies for the longterm management of leachate - A visiting scholar, Hatsuko Hamaguchi, from Japan has been hired to assist the team with TiO₂-magnetite process testing. - Dr. Chen with Ms. Hamaguchi's assistance has synthesized the first photocatalytic nanoparticles at FAU. - Testing of photocatalysis with actual leachate collected from the Solid Waste Authority of Palm Beach County is underway. Project web site: http://slab.civil.fau.edu/~daniel/labees/html/leachate.html Figure 1: PIMA process reactor Figure 2: TiO₂-magnetite process reactor Figure 3: Experiments to validate the ammonia meter. Figure 4: Comparative of the color removal between raw leachate and treated leachate Note: Sample 0 is raw leachate, sample 2 is UV treated leachate, and samples 3, 4, and 8 are PIMA treated leachate. Figure 5: COD scoping tests results Figure 6: Conductivity scoping tests results Figure 7: TDS scoping tests results Figure 8: BOD₅ scoping tests results Figure 9: Ammonia scoping tests results Figure 10: Lead scoping tests results Table 2: Best removal percentage observed during individual scoping tests. | | | | COD | | | Conductivity | | | TDS | | |--------------|---------------------------------------------------------|------------------------|--------------------------------------|---------------------|------------------------|-----------------------|------------------------|-------------------------------------|----------------|------| | | | Low | Medium | High | Low | Medium | High | Low | Medium | Hig | | Starting con | centration or value | 1.05 | 3.30 | 10.90 | 2,750 | 16,250 | 81,625 | 0.83 | 8.12 | 40.0 | | | IMA, x = 10.2 cm | 21 | 53 | 39 | -3 | -14 | -2 | - | -3 | 0 | | | UV, $x = 10.2 \text{ cm}$ | - | 11 | 3 | 3 | -19 | 2 | - | 8 | 6 | | Process | PIMA, $x = 6.3$ cm | 54 | 42 | 35 | -26 | -16 | -9 | - | 38 | -8 | | | PIMA, x = 10.2 cm | 51 | 49 | 29 | -12 | -14 | 0 | - | 13 | 3 | | | PIMA, x = 15.2 cm | 44 | 52 | 32 | 6 | -12 | -3 | - | -8 | -1 | | | | conce | entrations in g/L | as O ₂ | , | values in µS/cr | n | con | centrations in | g/L | | | | | | | | | | Caraciti vite | | | | Remarks | | values after
24 hrs | ſ | | | | | Sensitivity
issue | | | | Remarks | | | BOD₅ | | | Ammonia | | • | | | | Remarks | | | | High | Low | Ammonia
Medium | High | issue | | | | | ncentration or value | 24 hrs | BOD₅ | High
425 | Low
110 | | High
930 | issue
Lead | | | | | ncentration or value
IMA, x = 10.2 cm | 24 hrs | BOD ₅
Medium | | | Medium | | Lead Medium | ·
· | | | | | Low 55 | BOD₅
Medium
120 | 425 | 110 | Medium
540 | 930 | Lead Medium 0.30 | | | | | IMA, x = 10.2 cm | Low 55 38 | BOD₅
Medium
120
- | 425 | 110
-5 | Medium 540 24 | 930
-8 | Lead Medium 0.30 99.96 | ·
· | | | Starting con | IMA, x = 10.2 cm
UV, x = 10.2 cm | Low 55 38 - | BOD ₅ Medium 120 - 100 | 425
28
- | 110
-5
-2 | Medium 540 24 20 | 930
-8
-12 | Lead Medium 0.30 99.96 53.33 | | | | Starting con | IMA, x = 10.2 cm
UV, x = 10.2 cm
PIMA, x = 6.3 cm | 24 hrs Low 55 38 - | BOD ₅ Medium 120 - 100 - | 425
28
-
- | 110
-5
-2
-16 | 540
24
20
21 | 930
-8
-12
-4 | Lead Medium 0.30 99.96 53.33 99.97 | | | Table 3: Best removal percentage observed during mixture scoping tests. | | | | COD | | | Conductivity | | | TDS | | |--------------|--|---------------|------------------------|--------------|-------------|---------------------|-----------|-------------|-----------------------------|----------------| | | | Low | Medium | High | Low | Medium | High | Low | Medium | High | | Starting con | centration or value | 0.74 | 3.83 | 11.60 | 3,915 | 28,250 | 78,750 | 0.17 | 13.34 | 43.75 | | | IMA, x = 10.2 cm | 28 | 36 | 20 | 2 | 2 | 14 | 0 | 0 | 23 | | Process | UV, x = 10.2 cm | 40 | 3 | 14 | 2 | 2 | 19 | 0 | 0 | 20 | | | PIMA, $x = 10.2$ cm | 38 | 28 | 33 | 5 | 0 | 10 | 0 | -2 | 19 | | Remarks | | | _ | | | • | | Sensitivity | Sensitivity | | | | | | | | | | | issue | issue | | | | | | BOD₅ | | | Ammonia | | • | issue Lead | | | | | Low | BOD ₅
Medium | High | Low | Ammonia
Medium | High | • | | High | | Starting con | ocentration or value | Low > 417 | | High > 1,650 | Low
52.5 | | High
- | issue | Lead | High | | Starting con | ncentration or value
IMA, x = 10.2 cm | | Medium | | | Medium | | Low | Lead
Medium | | | Starting con | | > 417 | Medium
- | > 1,650 | 52.5 | Medium
470 | - | Low 0.07 | Lead
Medium | 0.3 | | | IMA, x = 10.2 cm | > 417
> 37 | Medium
- | > 1,650 | 52.5
-13 | Medium
470
10 | - | Low 0.07 | Lead
Medium
0.3
95 | 0.3
> 99.97 | No results obtained (experiment not completed)* Can not conclude due to the inequality Figure 11: Global summary of real leachate experiments concerning COD Figure 12: Global summary of real leachate experiments concerning conductivity Figure 13: Global summary of real leachate experiments concerning TDS Figure 14: Global summary of real leachate experiments concerning BOD₅ Figure 15: Global summary of real leachate experiments concerning ammonia Figure 16: Global summary of real leachate experiments concerning lead Here are some more pictures of the student working on the project. Figure 17: Upgraded aeration system. Figure 18: Measurement of the air flow rate. Figure 19: Experiment #2 using an ammonia leachate with TiO₂-mangetite particles Figure 20: Experiment #5 using a COD (KHP) synthetic leachate with TiO_2 particles (Degussa P25) at time, t=0 hours Figure 21: Experiment #5 using a COD (KHP) synthetic leachate with TiO_2 particles (Degussa P25) at time, t = 1.0 hour Figure 22: Experiment #6 using an ammonia synthetic leachate with TiO_2 particles (Degussa P25) at time, t = 5.0 hours. Note no color change. Figure 23: Experiment #5: Reconditioning (drying at 105°C for 24 hours) of left over TiO₂ particles after treatment of synthetic leachate containing COD